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Abstract
On various regular lattices (simple cubic, body centred cubic, etc) decorating
an edge with an Ising spin coupled by bonds of strength L to the original vertex
spins and competing with a direct anti-ferromagnetic bond of strength αL can
give rise to three transition temperatures for suitable α. The system passes
through ferromagnetic, paramagnetic, anti-ferromagnetic and paramagnetic
phases respectively as the temperature is increased. For the square lattice on
the other hand, multiple decoration is required to see this effect. We note
here that a single decoration suffices for the Ising model on planar random
quadrangulations (coupled to 2D quantum gravity). Other random bipartite
lattices such as the Penrose tiling are more akin to the regular square lattice and
require multiple decoration to have any affect.

PACS numbers: 05.50.+q, 64.60.-i, 75.50.-y

The application of various classes of transformations, such as duality, star–triangle, and
decoration–iteration to the Ising model on regular two-dimensional lattices has been
exhaustively investigated in the past [1] both as a means of obtaining solutions on new
lattices and as a way of modelling the physical properties of substances with more
complicated behaviour than simple ferromagnetism. The decoration–iteration transformation
acts exclusively at the level of the bonds in the lattice, so it knows nothing about the larger-scale
structure. It is therefore still applicable on lattices which exhibit some form of geometrical
disorder. In this short note we look at the effect of a decoration–iteration transformation on an
Ising model on just such a class of lattices. We consider a model with competing ferromagnetic
and anti-ferromagnetic interactions living on an ensemble of random quadrangulations (i.e.
coupled to two-dimensional quantum gravity).

The basic decoration–iteration transform is shown in figure 1, where summing over the
central spin s with couplings L gives rise to a new effective coupling K between the primary
vertex spins σ1, σ2:∑

s

exp [Ls(σ1 + σ2)] = A exp(Kσ1σ2) (1)
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Figure 1. Summing over the central spin values gives an
effective coupling K .

Figure 2. A direct antiferromagnetic bond of strength
−αL decorated by n spins coupled by ferromagnetic
bonds of strength L.

where A = 2(cosh(2L))1/2 and exp(2K) = cosh(2L), i.e.

K = 1
2 log [cosh(2L)] . (2)

If a direct anti-ferromagnetic bond is stirred into the mix as well for good measure this becomes

K = −αL + 1
2 log [cosh(2L)] . (3)

This may easily be extended to a situation such as that shown in figure 2 where we introduce
n decorating spins as well as the direct anti-ferromagnetic bond. In this case summing over
the intermediate spins gives

K = −αL +
1

2
log

[
(exp(2L) + 1)n+1 + (exp(2L) − 1)n+1

(exp(2L) + 1)n+1 − (exp(2L) − 1)n+1

]
(4)

along with an equation for the normalization factor

A2 = 2n (sinh(2L))n+1

sinh(2K)
. (5)

It was pointed out by Nakano [2] that generically the form of the transformation in both
equations (3) and (4) meant that three transitions could occur for an Ising model. Whether
this behaviour actually occurred or not depended on the critical temperature values for a given
lattice, along with the value of α and the degree n of iteration. For the singly decorated model,
the minimum value of K in equation (3), for instance, is Kmin = − 1

2 log(2) ∼ −0.3196 . . .

which is attained as α → 1. Since this is larger than the critical value of the coupling
at the anti-ferromagnetic transition on the square lattice Kcrit = −0.446 09 . . . the K(L)

curve can at best intersect the ferromagnetic transition value Kcrit = +0.446 09 . . . and only
one (ferromagnetic) transition will be in evidence in the decorated model. A generic curve
displaying this behaviour is shown in figure 3, which is for α = 4

5 . We can see that K(L)

does not dip below the line at Kcrit = −0.446 09 . . ., but does cross Kcrit = +0.446 09 . . .. As
α is increased still further, K(L) eventually becomes monotone decreasing, attaining Kmin as
α → 1, so even the ferromagnetic transition disappears.

This behaviour is strongly lattice dependent since we are looking for intersections of the
K(L) curve with the critical values of the coupling. Since Kcrit = ±0.2217 . . . for the simple
cubic lattice and Kcrit = ±0.1574 for the body-centred cubic lattice, these will display multiple
transitions when the K(L) curve cuts through the anti-ferromagnetic critical coupling values
for sufficiently large α. As L is decreased (i.e. the temperature is increased), following the
K(L) curve then takes one from a ferromagnetic phase via a paramagnetic phase to an anti-
ferromagnetic phase and finally to a paramagnetic phase again. One thus has a sequence of
one ferromagnetic and two anti-ferromagnetic transitions.
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Figure 3. For the square lattice ising model a singly-decorated bond as in figure 1, will
not give multiple transition points since the curve K(L) only crosses the ferromagnetic value
K = 0.446 09 . . .. We have taken α = 4

5 in the figure.

In short, for a lattice with an anti-ferromagnetic critical coupling of sufficiently small
modulus, |Kcrit| < |Kmin|, multiple transitions are to be expected when competing direct and
decorated bonds are present. For n-fold decoration the minimum value of K(L) tends to
Kmin, n = − 1

2 log(n + 1) as α → 1, so n = 2 is sufficient to induce a triple transition in even
the square lattice Ising model.

We now turn to the case of the Ising model coupled to 2D quantum gravity as an example
of the application of decoration–iteration transformations on geometrically disordered lattices.
The partition function for the Ising model on a single planar graph Gn with n vertices is just [3]

Zsingle(G
n, K) =

∑
{σ }

exp

(
K

∑
<i,j>

σiσj

)
. (6)

The coupling to gravity is incorporated by introducing a sum over some class of planar graphs
{Gn}

Zn(K) =
∑
{Gn}

Zsingle(G
n, K). (7)

The grand canonical partition function for this model

Z =
∞∑

n=1

( −4gc

(1 − c2)2

)n

Zn(K) (8)

where c = e−2K can be expressed as the free energy

Z = − 1

N2
log

∫
Dφ1Dφ2 exp

(
−Tr

[
1

2
(φ2

1 + φ2
2) − cφ1φ2 − g

4
(φ4

1 + φ4
2)

])
(9)

of a matrix model, where we have specifically given the potential which generates φ4 graphs
and φ1,2 are N × N Hermitian matrices. The N → ∞ limit is taken to pick out planar graphs.
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Figure 4. A section of a planar φ4 graph and its dual quadrangulation. As the vertex shading
makes clear, the quadrangulation, although random, is still bipartite and hence will admit an
antiferromagnetic transition.

The model as defined above has spins living on the vertices of φ4 planar graphs and has
a critical coupling of ccrit = 1

4 , Kcrit = 0.693 14 . . . [3]. It displays no anti-ferromagnetic
transition, because both odd and even loops are present. The decoration process outlined
above will thus not induce multiple transitions since there is no anti-ferromagnetic line for the
curve K(L) to cross. It is a similar story for both φ3 planar graphs and their dual triangulations.

However, the dual to the φ4 graphs, random quadrangulations, are rather more amenable
to decoration. We can see from figure 4 that, although the number of squares round a vertex
is arbitrary, the fact that every face is a square means that the random quadrangulation is
bipartite and hence would be expected to have an anti-ferromagnetic transition. This has been
confirmed both by direct simulation [4] and by studies of the Fisher (temperature) zeroes of the
partition function [5, 6]. The critical coupling for the ferromagnetic transition on the random
quadrangulations is given by the dual of the φ4 value, namely c∗

crit = (1 − ccrit)/(1 + ccrit) = 3
5

and the anti-ferromagnetic value by its inverse, 5
3 . If we translate these back to K we find

Kcrit = ∓ 1
2 log

(
3
5

) ∼ ±0.255 412 . . . for the ferromagnetic and anti-ferromagnetic critical
couplings, respectively. We can immediately see that since |Kcrit| < |Kmin| it is now possible
for the curve for a singly decorated K(L) to cross the anti-ferromagnetic line for a suitable
α value. In figure 5 we show K(L) for α = 0.92, where the three transition points may be
seen. All of the transitions will display the KPZ [7, 8] exponents α = −1, β = 1

2 , γ = 2.
Thus, unlike the regular square lattice, the Ising model with singly decorated and competing
bonds on random quadrangulations will display a sequence of one ferromagnetic and two
anti-ferromagnetic transitions as the temperature is increased.

As we have noted, the decoration results are lattice dependent since they deal with
critical temperatures. The ensemble of random quadrangulations we discussed above includes
degenerate gluings of the squares along multiple edges, since the original φ4 graphs do not
exclude self-energy and vertex correction diagrams. No analytical results are available for an
ensemble of ‘regular’ random quadrangulations, where no multiple gluings are allowed, but
the simulation of [4] gave an estimate of Kcrit ∼ 0.4, which lies outside the range for multiple
transitions with a single decoration. In this case we would not expect to see the sequence of
transitions discussed above. However, doubly decorated bonds have a minimum of K(L) at
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Figure 5. A plot of K versus L for a singly decorated bond, n = 1, α = 0.92. The
values of K corresponding to the ferromagnetic − 1

2 log 3
5 ∼ 0.255 412 . . . and antiferromagnetic

− 1
2 log 5

3 ∼ −0.255 412 . . . transitions on random quadrangulations are also shown. In this case a
singly decorated bond is sufficient to induce a triple transition.

Kmin, 2 ∼ −0.5493 . . . and thus would give rise to multiple transitions for these regular random
quadrangulations, just as they do for the regular square lattice Ising model.

It is also possible, of course, to elaborate the decoration procedure in various ways [9].
Introducing a higher spin s which can take values −S, −S + 1, . . . , S − 1, S as the decorating
spin and taking its interaction with the Ising spins to be

E = −L

S
sσ (10)

gives an effective coupling

K = −αL +
1

2
log


 sinh

(
(2S+1)L

S

)
(2S + 1) sinh

(
L
S

)

 (11)

(where we have again allowed for a direct anti-ferromagnetic bond). For this higher-spin
decoration K(L) still looks broadly similar to figures 3 and 5, but increasing S has the effect
of deepening the minimum in K(L) and hence allowing multiple transitions where decoration
by a spin- 1

2 Ising spin would be insufficient.
The Ising models discussed here have been living on an annealed ensemble of random

quadrangulations since the sum over graphs in equation (7) is at the level of the partition
function and not the free energy. They therefore represent a very particular sort of annealed
geometrical disorder. A natural elaboration of the discussion here is to consider the effects
of similar, but quenched, geometrical disorder. Although there have been no investigations
of the case of quenched ensembles of φ4 graphs or random quadrangulations, simulations
of various spin models on quenched ensembles of φ3 graphs or their dual triangulations
strongly suggest that there is little, if any, change in the critical couplings by comparison
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with the annealed ensemble [10]. The preceding discussion of the effects of the decoration–
iteration transformation could therefore be carried over verbatim—on quenched random
quadrangulations (allowing degenerate gluings) a competing anti-ferromagnetic and decorated
ferromagnetic bonds would be expected to give rise to multiple transitions.

Other models with quenched geometrical disorder can also be subjected to the same
treatment. A Penrose tiling is just such a case, since it is composed of rhombi and hence displays
an anti-ferromagnetic transition. The critical couplings here are Kcrit ∼ ±0.418 57 . . . [11]
so, as for the square lattice Ising model and the regular random quadrangulations, higher
decoration or higher spin decoration would be required to force the system to display multiple
transitions. On the Penrose tiling all of the transitions would be in the Onsager universality
class.

In summary, we have seen that geometrical disorder is no hindrance to carrying out a
decoration–iteration transformation and inducing multiple transitions. The value of the critical
coupling on (annealed) random quadrangulations means that a single decoration is sufficient to
have an effect. It is likely that quenched random quadrangulations would show a similar effect.
It might be of some interest to explore the effect of some of the other ‘classic’ transformations,
such as decoration–iteration in field or star–triangle, for the Ising model coupled to 2D quantum
gravity (i.e. living on planar random graphs or their duals) since, at least implicitly, the solution
in field is available.

DJ was partially supported by the EC IHP network ‘Discrete Random Geometries: From Solid
State Physics to Quantum Gravity’, HPRN-CT-1999-000161.
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